Deep Learning On Hyperspectral Imaging

Introduction

Spectral image processing has potential for numerous industrial applications and a large economic impact by improving quality inspection, increasing automation and the development of innovative applications. Consequently, spectral imaging has become an active field of research in Flanders, illustrated by the many academic research labs (e.g., KULeuven Mebios, University of Antwerp Visionlab, UGent IPI, ...) and research centers (VITO, imec, Flanders Food, Flanders Make, Sirris, ...) involved in this topic via basis research or hardware design and exploitation. Industrial applications can already be found in food sorting, recycling and remote sensing.

Practical purpose

Bring spectral processing algorithms from theory to practice, from the proof-of-concept and laboratory stage to practical industrial applications. The envisioned applications almost invariably rely on machine learning and AI methods, and many PoCs and academic results exist. These algorithms were typically trained on data collected in ideal settings by expensive generic hyperspectral imagers. It is often unclear how they would perform with less spectral bands or other optical constraints. Furthermore, many algorithms only show small improvements at the cost of significantly increased complexity, or are aimed at one very specific data set or problem. Therefore, identifying and implementing robust, existing algorithms that perform well over a wide range of conditions and can be executed fast enough on spectral data in industrial applications will be an important step in this project. Furthermore there is the need to transfer these algorithms from research cameras to simpler industrial cameras or other application scenarios, which requires model transfer strategies (transfer learning) involving a minimal effort for acquiring training samples on the new industrial setup.

The internship - Mission

This internship will allow the intern to work on implementation of AI algorithms for classification, quantification and semantic segmentation.

Context: Spectral imaging allows seeing subtle optical signatures or light wavelengths invisible for human vision. This has industrial applications in waste and food sorting or quality control. Powerful spectral image processing algorithms exist, mostly based on artificial intelligence and deep learning. Unfortunately, these methods are often restricted to laboratory environments with controlled conditions and high-quality spectral imagers. ThisI project brings these applications from laboratory environments to practical industrial use. To this end, smart task-optimized industrial spectral cameras will be developed with edge processing capabilities, which allows them to run AI-based decision making algorithms on-board. Camera design optimization will be based on design space modeling, camera simulation, and constrained optimization methods. These developments will be demonstrated at the proof-of-concept level by several end-use applications in a real industrial context: The determination of fruit quality parameters in a greenhouse environment, and quality inspection of food products in a free-fall sorting machine.

Master

Computer Science Engineering

Sector

IT

Locatie

Brussels

Stad

Brussel

Voordelen

We offer you an interesting experience in a modern company

A pleasant working environment where all of your talents are appreciated. We have a coworking place close to Brussels Midi station which is a wonderful, informal place to collaborate. However, we often work at the customer's site, which could be anywhere in Belgium (albeit most often around Brussels). You might get the chance to visit.

Challenging problems that require your innovative thinking. Cool projects where the software you write actually controls part of the world. The chance to get a first experience in doing what you love out there in the real world. Internships are unpaid, but we do offer full reimbursement of expenses and a generous general cost allowance.

A lot of freedom to organize your work the way that suits you best.

A vibrant atmosphere with room for new ideas, experimentation and cross-fertilization with other Kapernikov consultants. We are a friendly team to spar with and learn from.

Kapernikov is a self-organized company with sociocracy as toolbox, meaning decisions are taken and implemented by everyone as equals. We are not the classic organization with a strict hierarchy. Our employees come first.

Gezocht Profiel

The intern should be motivated to work on computer vision tasks.We expect a good understanding of computer science as a whole, but some competences are required for the task we propose:

Good experience with Python and/or C++.

Can work within a Linux environment.

Eager to learn and can easily pick up new skills.

Experience with deep learning algorithms/frameworks

Mail